

DIALAB Produktion und Vertrieb von chemisch – technischen Produkten und Laborinstrumenten Gesellschaft m.b.H. A – 2351 Wiener Neudorf, Austria, IZ-NÖ Süd, Hondastrasse, Objekt M55 Phone: ++43 (0) 2236 660910-0, Fax: ++43 (0) 2236 660910-30, e-mail: <u>office@dialab.at</u>

Liquid Reagents - ready to use

UREA UV AUTO Urease / GLDH

2 Reagents

Diagnostic reagent for quantitative in vitro determination of urea in human serum, plasma or urine on photometric systems

REF	Kit Size	Content
D95703B	1 x 12.5 L	1 x 10 L R1+ 2.5 L R2
D03121B	1 x 1.25 L	1 x 1 L R1 + 1 x 250 mL R2
D95704	5 x 100 mL	4 x 100 mL R1 + 1 x 100 mL R2
D98707	5 x 50 mL	4 x 50 mL R1 + 1 x 50 mL R2
D00715	5 x 25 mL	4 x 25 mL R1 + 1 x 25 mL R2
D00716	5 x 10 mL	4 x 10 mL R1 + 1 x 10 mL R2
D82911	10 x 50 mL	10 x 40 mL R1 + 4 x 25 mL R2
D0439917	5 x 62.5 mL	4 x 62.5 mL R1 + 1 x 62.5 mL R2
DA0845	5 x 50 mL	5 x 40 mL R1 + 5 x 10 mL R2
DT1045	4 x 62.5 mL	4 x 50 mL R1 + 4 x 12.5 mL R2
DK0742	5 x 50 mL	4 x 50 mL R1 + 1 x 50 mL R2
DB0945	2 x 150 mL	2 x 120 mL R1 + 2 x 30 mL R2

Additionally offered:

D95706	1 x 3 mL	Urea Standard	
D98485	5 x 3 mL	Calibrator	Diacal Auto
D98485SV	1 x 3 mL	Calibrator	Diacal Auto
D98481	12 x 5 mL	Control normal	Diacon N
D14481	5 x 5 mL	Control normal	Diacon N
D98481SV	1 x 5 mL	Control normal	Diacon N
D98482	12 x 5 mL	Control abnormal	Diacon P
D14482	5 x 5 mL	Control abnormal	Diacon P
D98482SV	1 x 5 mL	Control abnormal	Diacon P
D08581	12 x 5 mL	Urine Ctrl. normal	Diacon Urine Level 1
D08581SV	1 x 5 mL	Urine Ctrl. normal	Diacon Urine Level 1
D08582	12 x 5 mL	Urine Ctrl. abnormal	Diacon Urine Level 2
D08582SV	1 x 5 mL	Urine Ctrl. abnormal	Diacon Urine Level 2

TEST PARAMETERS

Method:	UV, 2 Point Kinetic (fixed time), decreasing reaction, GLDH
Wavelength	340 nm, Hg 334 nm, Hg 365 nm
Temperature:	25 °C, 30 °C or 37 °C
Sample:	Serum, plasma, urine
Linearity:	up to 600 mg/dL (100 mmol/L) on Hitachi
-	911
Sensitivity:	The lower limit of detection is 2 mg/dL
	(0.3 mmol/L)

SUMMARY [1,2]

Urea is the nitrogen-containing end product of protein catabolism. States associated with elevated levels of urea in blood are referred to as hyperuremia or azotemia. Parallel determination of uea and creatinine is performed to differentiate between pre-renl and post-renal azotemia. Prerenal azotemia, caused by e.g. dehydration, increased protein catabolism, cortisol treatment or decreased renal perfusion, leads to increased urea levels, while creatinine values remain within the reference range. In post-renal azotemias, for example caused by the obstruction of the urinary tract, both urea and creatinine levels rise, but creatinine in a smaller extent. In renal diseases urea concentrations are elevated when the glomerular filtration rate is markedly reduced and when the protein intake is higher than 200 g/day.

TEST PRINCIPLE

Urea + $2H_2O < Urease > 2 NH_4^+ + CO_3^2$

NH4⁺+2-Oxoglutarate+NADH<<u>GLDH</u>>L-Glutamate+NAD⁺ + H₂O

Decrease in absorbance, resulting from the GLDH-reaction, is proportional to the concentration of Urea in the sample.

ABBREVIATIONS

NAD NADH	=	Nicotinamide Adenine Dinucleotide reduced NAD
GLDH ADP	=	Glutamate Dehydrogenase Adenosine diphosphate

REAGENT COMPOSITION

COMPONENTS Reagent 1	CONCE	NTRATIONS
Tris Buffer, pH 7.8	150	mmol/L
2-Oxoglutarate	9	mmol/L
ADP	0.75	mmol/L
Urease	≥7	KU/L
GLDH (Glutamate dehydrogenase) Reagent 2	≥ 1	KU/L
NADH	1.3	mmol/L

REAGENT PREPARATION

Substrate Start: The reagents are ready to use.

Sample Start:

Mix 4 parts of Reagent 1 with 1 part of Reagent 2 (= Working Reagent). Leave the working reagent for at least 30 min. at 15 -25 °C before use.

REAGENT STABILITY AND STORAGE

Conditions: Protect from light. Close immediately after use. Do not freeze the reagents! Avoid contamination.

Substrate Start:

Stability: at $2 - 8^{\circ}$ C up to the expiration date Sample Start (Working Reagent):

Stability: at 15 – 25 °C 5 days at 2 – 8 °C 4 weeks

Protect the working reagent from light!

SAMPLE PREPARATION

Urine: Dilute urine 1 + 100 with dist. water. Diacon Urine controls must be prediluted the same way as patient samples.

SAMPLE STABILITY AND STORAGE [4]

Do not use ammonium heparin plasma!				
serum or plasma:	at 20 – 25 °C	7 days		
	at 4 – 8 °C	7 days		
	at - 20 °C	1 year		
urine:	at 20 – 25 °C	2 days		
	at 4 – 8 °C	7 days		
	at - 20 °C	1 month		
Freeze only once! Discard contaminated specimens.				

STANDARD

(not included in the kits – has to be ordered separately)				
Concentration	50 mg/dL (8.33 mmol/L)			
Storage:	2 – 8 °C			
Stability:	up to the expiration date			
Close immediately after use	e! Avoid contamination!			
Protect from light.				

MATERIALS REQUIRED BUT NOT PROVIDED

NaCl solution (9 g/L)

General laboratory equipment

MANUAL TEST PROCEDURE

Bring reagents and samples to room temperature. Reagent start

Pipette into test tubes	Blank	Std./Cal.	Sample	
Reagent 1	1000 µl	1000 µl	1000 µl	
Sample	-	-	10 µl	
Standard/Calibrator	-	10 µl	-	
Mix. Incubate for up to 5	minutes, the	n add:		
Reagent 2	250 µl	250 µl	250 µl	
Mix, incubate for 60 sec. at 25/30 °C or 30 – 40 sec. at 37 °C and measure absorbance A1 against reagent blank. Incubate for exactly 60 sec. and measure absorbance A2 against reagent blank. Calculate ΔA /min = A1 – A2.				
Sample start				
1 - i i i i i i i i i i				

Pipette into test tubes	Blank	Std./Cal.	Sample
Working Reagent	1000 µl	1000 µl	1000 µl
Sample	-	-	10 µl
Stdandard/Calibrator	-	10 µl	-
Mix, incubate for 60 sec. at $25/30$ °C or $30 - 40$ sec. at 37 °C and measure absorbance A1 against reagent blank. Incubate for exactly 60 sec. and measure absorbance A2 against reagent blank. Calculate $\Delta A/min = A1 - A2$.			

DIALAB Produktion und Vertrieb von chemisch – technischen Produkten und Laborinstrumenten Gesellschaft m.b.H. A – 2351 Wiener Neudorf, Austria, IZ-NÖ Süd, Hondastrasse, Objekt M55 Phone: ++43 (0) 2236 660910-0, Fax: ++43 (0) 2236 660910-30, e-mail: <u>office@dialab.at</u>

Note:

The method is optimized for 2-point kinetic measurement. It is mandatory to incubate all samples and the reagent blank strictly for the same time intervals. This method is therefore recommended for automated test procedure on automatic analysers.

CALCULATION

serum/plasma:

Urea (mg/dl) =	∆A/min Sample	v Cono Std/Col (mg/dl)
orea (mg/ur) =	∆A/min Std/Cal	x Conc. Std/Cal (mg/dl)

urine:

∆A/min Sample Urea (mg/dl) = x Conc. Std/Cal (mg/dl) x 101 ∆A/min Std/Cal

UNIT CONVERSION

Urea [mg/dL] x 0.1665 = Urea [mmol/L] Urea [mg/dL] x 0.467 = BUN [mg/dL] BUN [mg/dL] x 2.14 = Urea [mg/dL] (BUN: Blood Urea Nitrogen)

REFERENCE RANGE *

In serum / plasma [1]:

Adults:	[mg/dL]	[mmol/L]		
Global	17 – 43	2.8 – 7.2		
Women < 50 years	15 – 40	2.6 - 6.7		
Women > 50 years	21 – 43	3.5 – 7.2		
Men < 50 years	19 – 44	3.2 – 7.3		
Men > 50 years	18 – 55	3.0 – 9.2		
Children:				
1 – 3 years	11 – 36	1.8 – 6.0		
4 – 13 years	15 – 36	2.5 – 6.0		
14 – 19 years	18 – 45	2.9 – 7.5		
BUN in serum / plasma:				

Adults:	[mg/dL]	[mmol/L]
Global	7.94 – 20.1	2.8 – 7.2
Women < 50 years	7.01 – 18.7	2.6 – 6.7
Women > 50 years	9.81 – 20.1	3.5 – 7.2
Men < 50 years	8.87 – 20.5	3.2 – 7.3
Men > 50 years	8.41 – 25.7	3.0 – 9.2
Children:		
1 – 3 years	5.14 – 16.8	1.8 – 6.0
4 – 13 years	7.01 – 16.8	2.5 - 6.0
14 – 19 years	8.41 – 21.0	2.9 – 7.5

Urea/Creatinine ratio in serum [1]:

25 - 40 [(mmol/L)/(mmol/L)]

20 - 35 [(mg/dL)/(mg/dL)]

Urea in urine [2]:

26 - 43 g/24h (0.43 - 0.72 mol/24h)

* Each laboratory should check if the reference ranges are transferable to its own patient population and determine own reference ranges if necessary

PERFORMANCE CHARACTERISTICS

LINEARITY / MEASURING RANGE

The test has been developed to determine urea concentrations within a measuring range from 2 - 600 mg/dL in serum/plasma (on Hitachi 911) or 30 g/dL in urine. If values exceed this range the samples should be diluted 1 + 2 with NaCl solution (9 g/L) and the result multiplied by 3.

Note: Linearity may be different on different analysers and with different instrument applications.

SENSITIVITY/LIMIT OF DETECTION

The lower limit of detection is 2 mg/dL (0.3 mmol/L).

PRECISION (at 37°C)

Intra-assay n = 20	Mean [mg/dL]	SD [mg/dL]	CV [%]
Sample 1	21.3	0.50	2.33
Sample 2	35.3	0.82	2.33
Sample 3	141	1.52	1.08
			O) / F0 / 7
Inter-assay, n = 20	Mean [mg/dL]	SD [mg/dL]	CV [%]
Inter-assay, n = 20 Sample 1	Mean [mg/dL] 20.3	SD [mg/dL] 0.58	CV [%] 2.88
, ,			

SPECIFICITY/INTERFERENCES

no interferen	ce up to:			
Ascorbic acid	30 mg/dL			
Bilirubin	40 mg/dL			
Hemoglobin	500 mg/dL			
triglycerides	2000 mg/dL			
Ammonium	ions interfere, therefore do not use ammonium	ı		
herparin as anticoagulant for collection of plasma!				

For further information on interfering substances refer to Young DS [5].

METHOD COMPARISON

A comparison between Dialab Urea (y) and a commercially available test (x) using 68 samples gave following results: y = 0.99 x + 1.06 mg/dL; r= 0.999.

CALIBRATION

The assay requires the use of a uric acid standard or calibrator. We recommend the Dialab Urea Standard and the Dialab multi calibration serum Diacal Auto. The assigned values of the calibrator have been made traceable to NIST SRM[®]-909 Level 1.

QUALITY CONTROL

All controls with urea values determined by this method can be used

We recommend the Dialab serum controls Diacon N (control serum with values in the normal range) and Diacon P (control serum with values in the abnormal range) as well as the Dialab urine controls Diacon Urine Level 1 (control urine normal) and Level 2 (control urine abnormal).

Each laboratory should establish corrective action in case of deviations in control recovery.

AUTOMATION

Applications for automated systems are available upon request.

WARNINGS AND PRECAUTIONS

- The reagents contain sodium azide (0.95 g/L) as preservative. Do not swallow! Avoid contact with skin and mucous membranes
- 2. Reagent 1 contains biological material. Handle the product as potentially infectious according to universal precautions and good laboratory practice.
- In very rare cases, samples of patients with gammopathy 3 might give falsified results [6].
- Please refer to the safety data sheets and take the 4. necessary precautions for the use of laboratory reagents.
- 5. For diagnostic purposes, the results should always be assessed with the patient's medical history, clinical examinations and other findings. 6

For professional use only!

WASTE MANAGEMENT Please refer to local legal requirements.

REFERENCES

- Thomas L. Clinical Laboratory Diagnostics. 1st ed. Frankfurt: TH-Books Verlagsgesellschaft; 1998. p. 374-7. Burtis CA. Ashwood ER. editors. Tietz Textbook of Clinical
- 2
- Chemistry. 3rd ed. Philadelphia: W.B Saunders Company; 1999. p. 1838
- 3 Talke H, Schubert GE. Enzymatische Harnstoffbestimmung in Blut und Serum im optischen Test nach Warburg (Enzymatic determination of urea in blood and serum with the optical test according to Warburg). Klin Wschr 1965;43:174-5. Guder WG, Zawta Be et al. The quality of Diagnostic Samples. $1^{\rm st}$
- 4 ed. Darmstadt: GIT Verlag; 2001, p. 48-9. Young DS. Effects of Drugs on Clinical Laboratory Tests. 5th ed.
- 5. Volume 1 and 2. Washington, DC: The American Association for Clinical Chemistry Press 2000.
- 6. Bakker AJ, Mücke M. Gammopathy interference in clinical chemistry assays: mechanisms, detection and prevention. ClinChemLabMed 2007; 45(9): 1240-1243.

