

GOT (AST) mod. IFCC

Diagnostic reagent for quantitative in vitro determination of GOT (AST) in human serum or plasma on photometric systems

REF	Kit Size	Configuration
D03115B	1 x 1.25 L	1 x 1 L R1 + 1 x 0.25 L R2
D94610	5 x 100 mL	4 x 100 mL R1 + 1 x 100 mL R2
D98616	5 x 50 mL	4 x 50 mL R1 + 1 x 50 mL R2
D00678	5 x 25 mL	4 x 25 mL R1 + 1 x 25 mL R2
D98617	5 x 10 mL	4 x 10 mL R1 + 1 x 10 mL R2
D72911	10 x 50 mL	10 x 40 mL R1 + 4 x 25 mL R2
D0427917	5 x 62.5 mL	4 x 62.5mL R1 + 1 x 62.5mL R2
DA0829	5 x 50 mL	5 x 40 mL R1 + 5 x 10 mL R2
DT1029	4 x 62.5 mL	4 x 50 mL R1 + 4 x 12.5mL R2
DK0728	5 x 50 mL	4 x 50 mL R1 + 1 x 50 mL R2
DE1829	4 x 62.5 mL	4 x 50 mL R1 + 4 x 12.5 mL R2
DB20322	4 x 62.5 mL	4 x 50 mL R1 + 4 x 12.5 mL R2

Additionally available:

D98485	5 x 3 mL	Calibrator	Diacal Auto
D98485SV	1 x 3 mL	Calibrator	Diacal Auto
D98481	12 x 5 mL	Control normal	Diacon N
D14481	5 x 5 mL	Control normal	Diacon N
D98481SV	1 x 5 mL	Control normal	Diacon N
D98482	12 x 5 mL	Control abnormal	Diacon P
D14482	5 x 5 mL	Control abnormal	Diacon P
D98482SV	1 x 5 mL	Control abnormal	Diacon P

For professional in vitro diagnostic use only.

GENERAL INFORMATION

Method Shelf life	UV, kinetic, decreasing reaction, modified IFCC 15 months from production date
Storage	$2 - 8 \degree C$
Wavelength	340 nm, Hg 334 nm, Hg 365 nm
Optical path	1 cm
Temperature	37°C
Sample	Serum, EDTA-plasma, heparinized plasma

INTENDED USE

Diagnostic reagent for quantitative in vitro determination of GOT (AST) in human serum or plasma on photometric systems.

DIAGNOSTIC SIGNIFICANCE [1, 2]

Alanine Aminotransferase (ALAT/ALT), also called Glutamic Pyruvic Transaminase (GPT) and Aspartate Aminotransferase (ASAT/AST), formerly called Glutamic Oxalacetic Transaminase (GOT) are the most important representatives of a group of enzymes, the aminotransferases or transaminases, which catalyse the conversion of α -keto acids into amino acids by transfer of amino groups.

keto acids into amino acids by transfer of amino groups. As liver specific enzyme GPT is only significantly elevated in hepatobiliary diseases. Increased GOT levels, however, can occur in connection with damages of heart or skeletal muscle as well as of liver parenchyma. Parallel measurement of GPT and GOT is therefore applied to distinguish liver from heart or skeletal muscle damages. The GOT/GPT ratio is used for differential diagnosis in liver diseases. While ratios < 1 indicate mild liver damage, ratios > 1 are associated with severe, often chronic liver diseases.

TEST PRINCIPLE

L-Aspartate + 2-Oxoglutarate < GOT > Oxaloacetate + L-Glutamate

Oxaloacetate + NADH + H⁺ < HDH > L-Malate + NAD

NADH is oxidized to NAD⁺, the resulting decrease in absorbance at 340 nm is directly proportional to the activity of GOT in the sample. This is a modified formulation for the assay of GOT, as recommended by the IFCC

This is a modified formulation for the assay of GOT, as recommended by the IFCC (International Federation of Clinical Chemistry). The IFCC reference method includes pyridoxal-5'-phosphate (P-5-P). P-5-P serves as coenzyme in AA transfer and stabilizes the activity of transaminases. Therefore, addition of P-5-P avoids falsely low values in samples containing insufficient endogenous P-5-P, e.g. from patients with myocardial infarction, liver disease and intensive care patients [1, 3].

AA = Amino Acid

MDH = Malate Dehydrogenase NAD⁺ = Nicotinamide Adenine Dinucleotide

NADH = reduced NAD

LDH = Lactate Dehydrogenase

REAGENT COMPOSITION

COMPONENTS	CONCENT	RATION
Reagent 1		
Tris, pH 7.8	110	mmol/L
L-Aspartate	340	mmol/L
MDH	0.5	kU/L
LDH	1.1	kU/L
Reagent 2		
2-Oxoglutarate	85	mmol/L
NADH	≥ 1	mmol/L

- NaCl solution (9 g/L).
 - Clinical chemistry analyser. Dialab Pyridoxal-5'-Phosphate in case of determination with P-5-P.

REAGENT PREPARATION

Substrate Start:

Reagents are ready to use.

Sample Start: Mix 4 parts of Reagent 1 with 1 part of Reagent 2.

(= working reagent)

STORAGE AND STABILITY

Conditions:	Protect from light. Avoid contamination. Close immediately after use. Do not freeze the reagents!		
Substrate Start: Storage: Stability: Sample Start (Working	1 Reagent):	at 2 – 8 °C up to the expiration o	date
Stability:	,	at 2 – 8 °C at 15 – 25 °C	4 weeks 5 days

The working reagent must be protected from light!

WARNINGS AND PRECAUTIONS

- The reagents contain sodium azide (0.95 g/L) as preservative. Do not swallow! Avoid contact with skin and mucous membranes.
- 2. Reagent 1 contains animal material. Handle the product as potentially infectious according to universal precautions and good clinical laboratory practices.
- In very rare cases, samples of patients with gammopathy might give falsified results [4].
- Please refer to the safety data sheets and take the necessary precautions for the use of laboratory reagents.
- For diagnostic purposes, the results should always be assessed with the patient's medical history, clinical examinations and other findings.
- 6. For professional use only!

SPECIMEN COLLECTION AND STORAGE

Stability [5]:		
In serum/plasma	at 20 – 25 °C	4 days
	at 4 – 8 °C	7 days
	at - 20 °C	3 months
Discard contaminated	specimens. Freeze c	only once!

TEST PROCEDURE

Bring reagents and samples to room temperature.

Note: If pyridoxal phosphate (P-5-P) is used, please consult instruction insert for P-5-P before performing test (for Substrate Start only).

Substrate Start

Pipette into test tubes	37°C		
Reagent 1	1000 µl		
Sample	100 µl		
Mix. Incubate for 5 min. Then add:			
Reagent 2 250 µl			
Mix. Read initial absorbance against air after 1 min. and start a timer. Read absorbance again after exactly 1, 2 and 3 min.			

Sample Start (do not use sample start with P-5-P)

Pipette into test tubes	37°C	
Working reagent	1000 µl	
Sample	100 µl	
Mix. Read initial absorbance against air after 1 min. and start a timer.		
Read absorbance again after exactly 1, 2 and 3 min.		

Automation

Special adaptations for automated analysers can be made on request.

INTERPRETATION OF RESULTS

Calculation

With factor (light path 1 cm):

From absorbance readings calculate $\Delta A/min$ and multiply by the corresponding factor:

2143

2184 3971

GOT [U/L] = $\Delta A/min x$ factor

Factors (37 °C):

Substrate Start:	
Factor at 340 nm	
Factor at 334 nm	
Factor at 365 nm	

Sample Start: Factor at 340 nm

Factor at 340 nm	1745
Factor at 334 nm	1780
Factor at 365 nm	3235

With calibrator:

GOT [U/L] =	∆A/min Sample	- v Cono. Colibrator [1]/[1]
GOT [0/L] -	∆A/min Calibrator	 x Conc. Calibrator [U/L]

Unit Conversion GOT [U/L] x 0.0167 = GOT [µkat/L]

QUALITY CONTROL AND CALIBRATION

All control sera with GOT values determined by this method can be used.

We recommend the Dialab serum controls **Diacon N** (control serum with values in the normal range) and **Diacon P** (control serum with values in the abnormal range). Each laboratory should establish corrective action in case of deviations in control recovery.

Calibration

The use of a GOT Calibrator is optional. We recommend the Dialab multi calibration serum **Diacal Auto**.

PERFORMANCE CHARACTERISTICS

LINEARITY, MEASURING RANGE

On automated systems the test is suitable for the determination of GOT activities up to 700 U/L.

In case of manual procedure, the test is suitable for GOT activities which correspond to a maximum $\Delta A/min = 0.16$ at 340 nm and 334 nm or 0.08 at 365 nm.

Above this concentration the samples should be diluted 1+9 with NaCl solution (9 g/L) and the results multiplied by 10.

SENSITIVITY/LIMIT OF DETECTION

The lower limit of detection is 4 U/L.

PRECISION (at 37 °C)

Without P-5-P			
Intra-assay, n = 20	Mean [U/L]	SD [U/L]	CV [%
Sample 1	25.1	0.82	3.25
Sample 2	51.3	1.57	3.06
Sample 3	116	0.90	0.77

Inter-assay, n = 20	Mean [U/L]	SD [U/L]	CV [%]
Sample 1	25.7	1.13	4.40
Sample 2	48.6	0.67	1.38
Sample 3	115	0.80	0.69

With P-5-P

Intra-assay, n = 20	Mean [U/L]	SD [U/L]	CV [%]
Sample 1	43.6	1.10	2.51
Sample 2	74.5	1.79	2.41
Sample 3	174	3.18	1.83

Inter-assay, n = 20	Mean [U/L]	SD [U/L]	CV [%]
Sample 1	44.0	1.59	3.61
Sample 2	77.0	3.05	3.97
Sample 3	187	3.37	1.80

SPECIFICITY/INTERFERENCES

no interference up to:

Ascorbic acid	30 mg/dL
Bilirubin	40 mg/dL
Triglycerides	2000 mg/dL

The presence of hemoglobin in serum indicates destruction of erythrocytes with release of COT, thus producing high interforence

of GOT, thus producing high interference. For further information on interfering substances refer to Young DS [6].

METHOD COMPARISON

With P-5-P

A comparison between Dialab GOT (AST) (y) with P-5-P and a commercially available test (x) using 107 samples gave following results: y = 0.961 x + 4.227; r = 0.998.

Without P-5-F

A comparison between Dialab GOT (AST) without P-5-P (y) and a commercially available test (x) using 105 samples gave following results: y = 0.967 x - 0.174 U/l; r= 1.000.

TRACEABILITY

This method has been standardized against the original IFCC formulation.

EXPECTED VALUES*

With P-5-P:		U/L	µkat/L
Women [7]		< 31	< 0.52
Men [7]		< 35	< 0.58
Children [1]	1 – 3 year(s)	< 50	< 0.83
	4 – 6 years	< 45	< 0.75
	7 – 9 years	< 40	< 0.67
	10 – 12 years	< 40	< 0.67
	13 – 15 years	< 35	< 0.58
	16 – 18 vears	< 35	< 0.58

Without P-5-P:			
Women [8, 9]	< 31 U/L	< 0.52 µkat/L	
Men [8, 9]	< 35 U/L	< 0.58 µkat/L	

* Each laboratory should check if the reference ranges are transferable to its own patient population and determine own reference ranges if necessary.

LIMITATIONS

 Eventual GOT (AST), mod. IFCC carry-over to reagent Protein Total in Urine/CSF (Pyrogallol red). The actual carry-over depends on the analyser.

WASTE MANAGEMENT

Please refer to local legal requirements.

LITERATURE

- Thomas L. Alanine aminotransferase (ALT), Aspartate aminotransferase (AST). In: Thomas L, editor. Clinical Laboratory Diagnostics. 1st ed. Frankfurt: TH-Books Verlagsgesellschaft; 1998. p. 55-65.
- Moss DW, Henderson AR. Clinical enzymology. In: Burtis CA, Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia: W.B Saunders Company; 1999. p. 617-721.
- Bergmeyer HU, Horder M, Rej R. Approved Recommendation (1985) on IFCC Methods for the Measurement of Catalytic Concentration of Enzymes. L. Clin. Chem. Clin. Biochem 1986; 24: 497-510.
- Bakker AJ, Mücke M. Gammopathy interference in clinical chemistry assays: mechanisms, detection and prevention. ClinChemLabMed 2007;45(9):1240-1243.
- 5. Guder WG, Zawta B et al. The Quality of Diagnostic Samples. 1st ed. Darmstadt: GIT Verlag; 2001; p. 18-9.
- Young DS. Effects of Drugs on Clinical Laboratory Tests. 5th ed. Volume 1 and 2. Washington, DC: The American Association for Clinical Chemistry Press 2000.
 Schumann G, Bonora R, Ceriotti F, Férard G et al. IFCC primary reference
- Schumann G, Bonora R, Ceriotti F, Férard G et al. IFCC primary reference procedure for the measurement of catalytic activity concentrations of enzymes at 37°C. Part 5: Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase. Clin Chem Lab Med 2002; 40:725-33.
- Lorentz K, Röhle G, Siekmann L. Einführung der neuen Standardmethoden 1994 zur Bestimmung der katalytischen Enzymkonzentrationen bei 37 °C. DG Klinische Chemie Mitteilungen 26; 1995: Heft 4.
- Klinische Chemie Mitteilungen 26; 1995; Heft 4.
 Zawta B, Klein G, Bablok W. Temperature Conversion in Clinical Enzymology? Klin. Lab. 1994; 40: 33-42.

