

DIALAB Produktion und Vertrieb von chemisch-technischen Produkten und Laborinstrumenten Gesellschaft m.b.H. Hondastrasse, Objekt M55, IZ NOE-Sued, 2351 Wiener Neudorf, Austria, Phone: +43 (0) 2236 660910-0, Fax: +43 (0) 2236 660910-30, e-mail: office@dialab.at

Liquid Reagents - ready to use

2 Reagents

Diagnostic reagent for quantitative in vitro determination of lactate dehydrogenase (LDH) in human serum or plasma on photometric systems

REF	Kit Size	Content
D03300B	1 x 1.25 mL	1 x 1 L R1 + 1 x 0.25 L R2
D00662	5 x 100 mL	4 x 100 mL R1 + 1 x 100 mL R2
D00663	5 x 50 mL	4 x 50 mL R1 + 1 x 50 mL R2
D00664	5 x 25 mL	4 x 25 mL R1 + 1 x 25 mL R2
D00665	5 x 10 mL	4 x 10 mL R1 + 1 x 10 mL R2
D89911	5 x 50 mL	4 x 50 mL R1 + 2 x 25 mL R2
D0431917	5 x 62.5 mL	4 x 62.5mL R1 + 1 x 62.5mL R2
DA0835	5 x 50 mL	5 x 40 mL R1 + 5 x 10 mL R2
DT1035	4 x 62.5 mL	4 x 50 mL R1 + 4 x 12.5mL R2
DK0733	5 x 50 mL	4 x 50 mL R1 + 1 x 50 mL R2
DE1835	2 x 62.5 mL	2 x 50 mL R1 + 2 x12.5 mL R2

Additionally offered:

D98481SV 1 x 5 mL Control abnormal Diacon P	D98485 D98485SV D98481 1 D14481 D98481SV D98482 1 D14482 D98481SV	5 X 3 ML 1 X 3 ML 2 X 5 ML 5 X 5 ML 1 X 5 ML 2 X 5 ML 5 X 5 ML 1 X 5 ML	Calibrator Calibrator Control normal Control normal Control abnormal Control abnormal Control abnormal	Diacal Auto Diacal Auto Diacon N Diacon N Diacon N Diacon P Diacon P Diacon P
---	--	--	--	--

TEST PARAMETERS

Method:	UV, kinetic, increasing reaction, IFCC
Wavelength:	340 nm, Hg 365 nm, Hg 334 nm
Temperature:	37 °C
Sample:	Serum, heparin plasma or EDTA plasma
Linearity:	up to 1200 U/L
Sensitivity:	The lower limit of detection is 5 U/L

SUMMARY [1,2]

Lactate dehydrogenase (LDH) is an enzyme, consisting of five different isoenzymes which catalyse the interconversion of L-lactate and pyruvate. LDH is present in the cytoplasm of all human tissues with higher concentrations in liver, heart and skeletal muscle, and lower values in erythrocytes, pancreas, kidney and stomach. Increased LDH activities are found in a variety of pathological conditions such as myocardial infarction, cancer, diseases of liver, blood or muscle. However, because of the lack of organ specificity, determination of its isoenzymes or other enzymes such as alkaline phosphatase or GPT (ALT) / GOT (AST) is necessary for differential diagnosis.

TEST PRINCIPLE

NAD+

L-Lactate + NAD ⁺ < <u>LDH</u>	> Pyruvate + NADH + H^+
REAGENT COMPOSITION	
COMPONENTS	CONCENTRATION
Reagent 1:	
N-Methyl-D-Glucamine, pH 9.	40 420 mmol/L
I -Lactate	65 mmol/l

L-Lactate	65	mmol/L
Reagent 2:		
NAD+	50	mmol/L

REAGENT PREPARATION

Substrate Start: Reagents are ready for use. Sample Start: Mix 4 parts of Reagent 1 with 1 part of Reagent 2. (= Working Reagent)

REAGENT STABILITY AND STORAGE

ight

SAMPLE STABILITY AND STORAGE [4]

Stability	at 4 – 8 °C	6 weeks
-	at 20 – 25 °C	4 days
Discard cor	taminated specimens.	-

MANUAL TEST PROCEDURE

Bring reagents and samples to room temperature.

Substrate Start

Pipette into a cuvette	Blank	Sample/Cal		
Sample	-	20 µL		
Dist. water	20 µL	-		
Reagent 1	1000 µL	1000 µL		
Mix. Incubate for approximate	ely 1- 5 min. The	n add		
Reagent 2	25	50 µL		
Mix. Read initial absorban	ice after 1 mir	nute and start a		
stopwatch.				
Read absorbance again af	ter exactly 1, 1	2 and 3 minutes		
Determine $\Delta A/min. = [\Delta A/mi$	n sample] – [∆A	/min blank] during		
the linear part of the assay.				
Sample Start				
Pipette into a cuvette	Blank	Sample/Cal		
Sample	Sample - 20 µL			
Dist. water 20 µL -				
Working Reagent 1000 µL 1000 µL				
Mix. Read initial absorbance after 1 minute and start a				
stopwatch.				
Read absorbance again after exactly 1, 2 and 3 min. Determine				
$\Delta A/min. = [\Delta A/min sample] - [\Delta A/min blank] during the linear$				
part of the assay.				

CALCULATION

With factor: (light path 1 cm) LDH [U/L] = $\Delta A/min x$ Factor Factors (37°C): Substrate Start 10080 Factor at 340 nm at 334 nm 10275 at 365 nm 18675 Sam

ipie	Start	
tor	at 340 nm	8095
	at 334 nm	8250
	at 365 nm	15000

With calibrator:

Fac

 x activity calibrator [U/L] ∆A/min Calibrator

UNIT CONVERSION

U/L x 0.01667 = µkatal/L

DIALAB Produktion und Vertrieb von chemisch-technischen Produkten und Laborinstrumenten Gesellschaft m.b.H. Hondastrasse, Objekt M55, IZ NOE-Sued, 2351 Wiener Neudorf, Austria, Phone: +43 (0) 2236 660910-0, Fax: +43 (0) 2236 660910-30, e-mail: <u>office@dialab.at</u>

REFERENCE RANGE *

	Female		Male	
	U/L	µkat/L		µkat/L
Adults [6]	< 247	< 4.12	< 248	< 4.14
Children [7]				
1 – 30 days	145 – 765	2.42 – 12.8	125 – 735	2.09 – 12.3
31 days - 1 year	190 – 420	3 17 – 7.01	170 – 450	2.84 – 7.52
1 – 3 years	165 – 395	2.76 – 6.60	155 – 345	2.59 – 5.76
4 – 6 years	135 – 345	2.25 – 5 76	155 – 345	2.59 – 4.76
7 – 9 years	140 – 280	2.34 – 4.68	145 – 300	2.42 – 5.01
10 – 12 years	120 – 260	2.00 - 4.34	120 – 325	2.00 – 5.43
13 – 15 years	100 – 275	1.67 – 4.59	120 – 290	2.00 – 4.84
16 – 18 years	105 – 230	1.75 – 3.84	105 – 235	1.75 – 3.92

* Each laboratory should check if the reference ranges are transferable to its own patient population and determine own reference

ranges if necessary.

PERFORMANCE CHARACTERISTICS

LINEARITY, MEASURING RANGE

On automated systems the test is suitable for the determination of LDH activities up to 1200 U/L.

In case of a manual procedure, the test is suitable for LDH activities which correspond to a maximal $\Delta A/min$ of 0.15 at 340 and 334 nm or 0.08 at 365 nm.

If these values are exceeded the sample should be diluted 1+10 with NaCl solution (9 g/l) and results multiplied by 11.

SENSITIVITY / LIMIT OF DETECTION

The lower limit of detection is 5 U/L

PRECISION

Intra-assay	Mean	SD	CV
n = 20	[U/L]	[U/L]	[%]
Sample 1	178	2.00	1.12
Sample 2	187	2.12	1.14
Sample 3	566	2.27	0.40
Inter-assay	Mean	SD	CV
n = 25	[U/L]	[U/L]	[%]
Sample 1	170	1.62	0.95
Sample 2	176	2.48	1.41
Sample 3	566	3 61	0.64

SPECIFICITY / INTERFERENCES

No interference up to:		
Ascorbic acid	30	mg/d
Bilirubin	40	mg/d
Triglycerides	2000	mg/d
Hemoglobin	50	mg/d

METHOD COMPARISON

A comparison between Dialab LDH-L (y) and the IFCC reference reagent (x) using 51 samples gave the following results: y = 0.949 x + 8.451 U/L; r = 0.998

A comparison with a commercially available test with 51 samples gave following results:

y = 0.992 x + 10.72 U/L; r = 0.997.

CALIBRATION

The use of an LDH Calibrator is optional.

We recommend the Dialab multi calibration serum **Diacal Auto**. This method has been standardized against the original IFCC formulation.

QUALITY CONTROL

All control sera with LDH values determined by this method can be used.

We recommend the Dialab serum controls **Diacon N** (control serum with values in the normal range) and **Diacon P** (control serum with values in the abnormal range).

Each laboratory should establish corrective action in case of deviations in control recovery.

AUTOMATION

Special applications for automated analyzers can be made on request.

WARNINGS AND PRECAUTIONS

- 1. In very rare cases, samples of patients with gammopathy might give false results [8].
- Please refer to the safety data sheets and take the necessary precautions for the use of laboratory reagents.
- For diagnostic purposes, the results should always be assessed with the patient's medical history, clinical examinations and other findings.
 For professional use only!

WASTE MANAGEMENT

Please refer to local legal requirements.

REFERENCES

- Thomas L. Clinical laboratory diagnostics. 1st ed. Frankfurt: TH-Books Verlagsgesellschaft; 1998. 89-94.
- Moss DW, Henderson AR. Clinical enzymology In: Burtis CA, Ashwood ER, editors. Tietz Textbook of clinical Chemistry. 3rd ed. Philadelphia: W.B. Saunders Company; 1999.617-721
- Deutsche Gesellschaft f
 ür Klinische Chemie. (German Society for Clinical Chemistry). Recommendation for the determination of the catalytic concentration of lactate dehydrogenase at 37 °C. Eur J Clin Chem Clin Biochem 1993;31:897-9.
- Guder WG, Zawta B et al. The Quality of Diagnostic Samples. 1st ed. Darmstadt: GIT Verlag; 2001; p.26-7.
- Young DS. Effects of Drugs on Clinical Laboratory Tests. 5th ed. Volume 1 and 2. Washington, DC: The American Association for Clinical Chemistry Press 2000.
- Schumann G, Bonara R, Ceriotti F, Férard G et al. IFCC primary reference procedure fort he measurement of catalytic activity concentrations of enzymes at 37°C. Part 3: Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase. Clin Chem Lab Med 2002; 40:643-48.
- 7. Soldin JS, Hicks JM. Pediatric reference ranges. Washington: AACC Press:1995:95
- Bakker AJ, Mücke M. Gammopathy interference in clinical chemistry assay: Mechanism, detection and prevention. Clin Chem Lab Med 2008; 45(9):1240-1243.

2°C

